Open main menu

Changes

Information for healthcare providers

17,480 bytes added, 15:28, 10 September 2019
no edit summary
==Radiological protection of patients==
<br/>
Medical exposure of patients has unique considerations that affect how the fundamental principles of radiological protection are applied. Such uniqueness is reflected in the application of all three principles in the protection of patients ([[ICRP Publication 103]] The 2007 Recommendations of the International Commission on Radiological Protection, [[ICRP Publication 105]] Radiological Protection in Medicine).ADDITIONAL INFO/LINK TO PRINCIPLES OF PROTECTION
===justification Justification in protection of patients===Justification in radiological protection of patients is different from justification of other radiation applications, in that generally the very same person enjoys the benefits and suffers the risks associated with a procedure. Dose limits are not directly relevant, since ionising radiation, used for medically indicated purpose and at the appropriate level of dose, is an essential tool that will cause more good than harm. ([[ICRP Publication 105]] Radiological Protection in Medicine) There are three levels of justification of a radiological practice in medicine: (1) At the first and most general level, the proper use of radiation in medicine is accepted as doing more good than harm to the society. This general level of justification is now taken for granted; (2) At the second level, a specified procedure with a specified objective is defined and justified (e.g. chest x rays for patients showing relevant symptoms). The aim of the second level of justification is to judge whether the radiological procedure will improve the diagnosis or treatment, or will provide necessary information about the exposed individuals. The total benefits from a medical procedure include not only the direct health benefits to the patient, but also the benefits to the patient’s family and to the society; (3) At the third level, the application of the procedure to an individual patient should be justified (i.e. the particular application should be judged to do more good than harm to the individual patient).  Hence all individual medical exposures should be justified in advance, taking into account the specific objectives of the exposure and the characteristics of the individual involved. Usually, no additional justification is needed for the application of a simple diagnostic procedure to an individual patient with the symptoms or indications for which the procedure has already been justified in general. For high-dose examinations, such as complex diagnostic and interventional procedures, individual justification by the practitioner is particularly important and should take account of all the available information. This includes the details of the proposed procedure, the characteristics of the individual patient, the expected dose to the patient, and the availability of information on previous or expected examinations or treatment. In addition, alternative procedures should always be considered regardless an examination involves high-dose or low-dose exposure. ([[ICRP Publication 85]] Avoidance of Radiation Injuries from Medical Interventional Procedures; [[ICRP Publication 117]] Radiological Protection in Fluoroscopically Guided Procedures outside the Imaging Department; [[ICRP Publication 121]] Radiological Protection in Paediatric Diagnostic and Interventional Radiology)<br/>
===Optimisation of protection for patients===
Optimisation of protection for patients is also unique ([[ICRP Publication 85]] Avoidance of Radiation Injuries from Medical Interventional Procedures; [[ICRP Publication 86]] Prevention of Accidents to Patients Undergoing Radiation Therapy; [[ICRP Publication 112]] Preventing Accidental Exposures from New External Beam Radiation Therapy Technologies; [[ICRP Publication 121]] Radiological Protection in Paediatric Diagnostic and Interventional Radiology). In the first place, radiation therapy is entirely different from anything else in that the dose to a human being is intentional and its potentially cell-killing properties the very purpose of the treatment. In such cases, optimisation becomes an exercise in minimising doses (and/or their deleterious effects) to surrounding tissues without compromising the pre-determined and intentionally lethal dose and effect to the target volume.
 
The optimisation of radiological protection for patients in medicine is usually applied at two levels: (1) the design, appropriate selection, and construction of equipment and installations; and (2) the day-to-day methods of working (i.e. the working procedures). The basic aim of this optimisation of protection is to adjust the protection measures for a source of radiation in such a way that the net benefit is maximised. The optimisation of radiological protection means keeping the doses ‘as low as reasonably achievable, economic and societal factors being taken into account’, and is best described as management of the radiation dose to the patient to be commensurate with the medical purpose.
 
In optimisation of protection of the patient in diagnostic procedures, such as [[diagnostic radiology]] and [Interventional procedures]], again the same person gets the benefit and suffers the risk, and again individual restrictions on patient dose could be counterproductive to the medical purpose of the procedure. Therefore, source-related individual dose constraints are not relevant. Instead, [[diagnostic reference levels]] (DRLs) (Publication 135) for a particular procedure, which apply to groups of similar patients rather than individuals, are used to ensure that doses do not deviate significantly from those achieved at peer departments for that procedure unless there is a known, relevant, and acceptable reason for the deviation. This is in contrast to the Commission’s usual balancing of utilitarian protection policies based on collective doses against deontological safeguards using dose constraints for the individual. The policy for radiological protection in medicine is that the radiation exposure be commensurate with the medical purpose.
 
In radiation therapy, the aim is to eradicate the neoplastic target tissue or to palliate the patient’s symptoms. Some tissue reactions to surrounding tissue and some risk of stochastic effects in exposed non-target tissues are inevitable, but the goal of all radiation therapy is to optimise the relationship between the probability of tumour control and normal tissue complications. It is necessary to differentiate between the dose to the target tissue and the dose to other parts of the body. If the dose to the target tissue is too low, the therapy will be ineffective. The exposures will not have been justified and the optimisation of protection does not arise. However, the protection of tissues outside the target volume is an integral part of dose planning, which can be regarded as including the same aims as the optimisation of protection.
<br/>
===Application of dose limits for protection of patients===
Medical exposures of patients have been properly justified and that the associated doses are commensurate with the medical purpose, so it is not appropriate to apply dose limits or dose constraints to the medical exposure of patients; such limits or constraints would often do more harm than good ([[ICRP Publication 105]] Radiological Protection in Medicine). Often, there are concurrent chronic, severe, or even life-threatening medical conditions that are more critical than the radiation exposure itself. The emphasis is then on justification of the medical procedures and on the optimisation of radiological protection ([[ICRP Supporting Guidance 2]] Radiation and your patient - A Guide for Medical Practitioners).
 
In most situations in healthcare, other than radiation therapy, it is not necessary to approach the thresholds for tissue reactions, even for the most part in fluoroscopically guided [[interventional procedures]], if the staff are properly educated and trained. The Commission’s policy is therefore to limit exposures so as to keep doses below these thresholds. The possibility of stochastic effects cannot be eliminated totally, so the policy is to avoid unnecessary sources of exposure and to take all reasonable steps to reduce the doses from those sources of exposure that are necessary or cannot be avoided.
<br/>
===Protecting pregnant patients===
Early pregnancy can go undetected, so it is prudent to ensure that patients of childbearing potential are not pregnant before undergoing [[diagnostic radiology]] or [[nuclear medicine]] studies that provides doses above which the risk of adverse fetal health effects is not considered negligible (1–10 mGy) ([https://www.acr.org/-/media/ACR/Files/Practice-Parameters/Pregnant-Pts.pdf]). Before [[Radiation therapy]], and in the absence of a documented history of applicable gynaecological surgery (e.g. tubal ligation, hysterectomy) or an established postmenopausal state, serum or urine pregnancy tests should be obtained, ideally 24–72 h prior to treatment ([http://jnm.snmjournals.org/content/53/10/1633]).
 
There are radiation-related risks to the embryo/fetus during pregnancy that are related to the stage of pregnancy and the absorbed dose to the embryo/fetus. [[ICRP]] has evaluated the effects of prenatal irradiation in detail ([[ICRP Publication 90]] Biological Effects after Prenatal Irradiation (Embryo and Fetus)). These effects include lethal effects, malformations, central nervous system effects, leukaemia and childhood cancer. Consideration of these effects is important when pregnant patients undergo [[diagnostic radiology]], [[interventional procedures]], or [[radiation therapy]] using ionising radiation. A balance must be attained between the health care of the patient and the potential for detrimental health effects to the embryo/fetus that accompanies the specific radiological procedure ([[ICRP Publication 84]]).
 
For [[diagnostic radiology]], referring physicians should have discussions with imaging specialists to help determine the best tests for their pregnant patients, taking into account non-ionising diagnostic imaging modalities, such as ultrasound or magnetic resonance imaging. If these modalities are not the most appropriate test based on the clinical scenario, or are not available, the most appropriate ionising radiation imaging modality should be utilised in such a way as to achieve the diagnosis required while keeping fetal and maternal doses as low as reasonably possible. Almost always, if a [[diagnostic radiology]] examination is medically indicated, the risk to the mother of not performing the procedure is greater than the risk of potential harm to the embryo/fetus.
 
If the examinations are justified and their performance is optimised, they should not be withheld from pregnant patients. Fetal dose reduction measures will vary depending on the specific test being administered, but may include reducing the dose of injected radiopharmaceutical, limiting the number of images performed, beam collimation, patient shielding, and ensuring that the maternal pelvis (and fetus) is not in the beam path during fluoroscopic procedures unless it is absolutely necessary.
 
A pregnant patient has a right to know the magnitude and type of potential radiation effects that may result from in-utero exposure. Benefits and risks of the examination should be discussed with the patient, including developmental and cancer risks to the unborn baby. Central nervous system malformations and intellectual deficits have only been reported at fetal doses >100 mSv. Fetal doses from routine medical imaging are generally well below 100 mSv, and are generally below 20 mSv ([https://www.ncbi.nlm.nih.gov/pubmed/22451572]).
 
[[radiation therapy]] (whether with external beam, brachytherapy, or nuclear medicine) can involve high radiation doses and may cause harm to the fetus. The risk to the fetus is dependent on the stage of fetal development. Lethal risk occurs in the pre-implantation phase, malformation occurs during major fetal organogenesis 3–7 weeks post implantation, mental retardation occurs at 8–15 weeks post implantation, and future cancer risk follows a stochastic model. Although there is variability in threshold radiation doses, it can be generalised that risks become notable at fetal doses of 100 mGy (10 rad) or above. So, it is essential to ascertain whether a female patient is pregnant prior to [[radiation therapy]]. In pregnant patients, cancers that are remote from the pelvis can usually be treated with radiation therapy. However, this requires careful planning. Cancers in the pelvis cannot be treated adequately during pregnancy without severe or lethal consequences for the embryo/fetus. [[radiation therapy]] in pregnant patients requires pre-therapy fetal dosimetry estimation followed by a comprehensive discussion of the benefits and risks of the procedure, with the patient included as part of the informed consent process.
 
It should also be noted that <sup>131</sup>I used for diagnostic or therapeutic purposes and <sup>32</sup>P used for therapeutic purposes, should be avoided in pregnant patients because iodine and phosphor can cross the placental barrier readily. The fetal thyroid is sufficiently mature to concentrate iodine at approximately 10 weeks post implantation, and there is a risk of causing fetal hypothyroidism ([[ICRP Publication 84]] Pregnancy and Medical Radiation). As a rule, a pregnant patient should not be treated with a radioactive substance unless the radionuclide therapy is required to save her life: in that extremely rare event, the potential absorbed dose and risk to the fetus should be estimated and conveyed to the patient and the referring Physician. Considerations may include terminating the pregnancy ([[ICRP Publication 84]] Pregnancy and Medical Radiation).
 
Termination of pregnancy is an individual decision affected by many factors. Absorbed doses below 100 mGy to the developing embryo/fetus should not be considered a reason for terminating a pregnancy. At doses to the embryo/fetus above this level, informed decisions should be made based upon individual circumstances, including the magnitude of the estimated dose to the embryo/fetus, and the consequent risks of harm to the developing embryo/fetus and risks of cancer in later life.
<br/>
===Protecting pediatric patients===
Children are more sensitive to radiation exposure than adults. Depending on their age, organ, and tumour type, children are reported to be, on average, two to three times more sensitive to radiation than adults, and the younger the infants or children, the more radiosensitive they are at high doses. So, the potential risks of ionising radiation in paediatric patients need to be considered. Physicians should exercise caution when using ionising radiation to image or treat children. In nuclear medicine, a lower administered activity than that would be used for an adult may be used; acceptable images could still be obtained as the size of a child is typically smaller than that of an adult.
 
For [[diagnostic radiology]], the following should be taken into consideration: (1) select the most optimised imaging protocol based on the patient’s age and size; (2) repeat imaging, or phases (e.g. CT), need to be justified relative to the importance of the additional information being gained vs the additional radiation dose; and (3) only image the indicated area. [[ICRP Publication 121]] Radiological Protection in Paediatric Diagnostic and Interventional Radiology and ‘Image Gently’ (www.imagegently.org) provide more details. It is worthwhile to note that where applicable, non-ionizing radiation imaging modalities may be considered.
<br/>
===Preventing accidents in radiation therapy===
Accident prevention in radiation therapy should be an integral part of the design of equipment and premises, and of the working procedures. Radiation therapy equipment should be designed to reduce operator errors by automatically rejecting demands outside the design specification. Radiation therapy equipment should be calibrated after installation or any modification and should be routinely checked by a standard test procedure that will detect significant changes in performance ([[ICRP Publication 86]] Prevention of Accidents to Patients Undergoing Radiation Therapy). Working procedures should require key decisions to be subject to independent confirmation ([[ICRP Publication 86]]). In radiation therapy, the avoidance of accidents is the predominant issue. A review of such accidents and advice for accident prevention is found in [[ICRP Publication 86]]; specific advice for brachytherapy can be found in [[ICRP Publication 97]] Prevention of High-dose-rate Brachytherapy Accidents and [[ICRP Publication 98]] Radiation Safety Aspects of Brachytherapy for Prostate Cancer using Permanently Implanted Sources, and that for ion beam therapy can be found in [[ICRP Publication 127]] Radiological Protection in Ion Beam Radiotherapy and [[ICRP Publication 112]] Preventing Accidental Exposures from New External Beam Radiation Therapy Technologies.
<br/>
===Special notes on the use of effective dose and dose measurements===
Effective dose was originally introduced so that all radiation exposures, external and internal, could be treated together in the control of occupational and public exposures, but it is also applicable to exposures in healthcare. Effective dose is used to inform decisions on justification of patient diagnostic and interventional procedures, planning requirement for research studies, and evaluation of accidental exposures. In each case, effective dose provides a measure of detriment. Effective dose can be used to classify different types of medical procedure into broad risk categories for the purpose of communicating risk levels to clinicians and patients. These applications rely on the validity of the linear-non-threshold (LNT) dose-response relationship. In addition, effective dose should not be used for individual or population-based cancer risk assessment as it does not consider individualized information. ICRP TG79 is preparing further advice on the use of effective dose in medicine as part of a task group report. <br/>
[[#Top|Back to Top]]