893
edits
Changes
no edit summary
More detailed information on radiation effects can be found in [[ICRP Publication 103]] (Annex A) or at the [https://www.unscear.org UNSCEAR] website.
'''[[#Top|Back to Top]]'''
==Radiological protection of patients==
Effective dose was originally introduced so that all radiation exposures, external and internal, could be treated together in the control of occupational and public exposures, but it is also applicable to exposures in healthcare. Effective dose is used to inform decisions on justification of patient diagnostic and interventional procedures, planning requirement for research studies, and evaluation of accidental exposures. In each case, effective dose provides a measure of detriment. Effective dose can be used to classify different types of medical procedure into broad risk categories for the purpose of communicating risk levels to clinicians and patients. These applications rely on the validity of the linear-non-threshold (LNT) dose-response relationship. In addition, effective dose should not be used for individual or population-based cancer risk assessment as it does not consider individualized information. ICRP TG79 is preparing further advice on the use of effective dose in medicine as part of a task group report.
<br/>
'''[[#Top|Back to Top]]'''
==Radiological protection of family members, carers and the public==
===The public===
Public access to hospitals and radiology rooms is restricted, but it is more open than is common in industrial and research laboratory operations. There are no radiological protection grounds for imposing restrictions on public access to non-designated areas. Due to the limited duration of public access, an access policy can be adopted for supervised areas if this is of benefit to patients or visitors and there are appropriate radiological protection safeguards. Public access to controlled areas with high-activity sources (e.g. brachytherapy and other therapy sources) should be limited to patients’ visitors, who should be advised of any restrictions on their behaviour.
[[#Top|Back to Top]]
In many countries, radiation exposure of pregnant females in biomedical research is not specifically prohibited. However, their involvement in such research is very rare and should be discouraged unless pregnancy is an integral part of the research. In order to protect the embryo/fetus, strict controls should be placed on the use of radiation in these cases.
'''[[#Top|Back to Top]]'''
==Radiological protection of healthcare staff==
===Protecting pregnant workers===
The basis for the control of occupational exposure of women who are not pregnant is the same as that for men. However, if a female worker declares to her employer that she is pregnant, additional controls have to be considered in order to attain a level of protection for the embryo/fetus broadly similar to that provided for members of the public. The working conditions of the pregnant worker, after the declaration of pregnancy, should be such as to make it unlikely that the additional equivalent dose to the embryo/fetus will exceed approximately 1 mSv during the remainder of the pregnancy. The part of a pregnancy prior to declaration of the pregnancy is covered by the normal protection of workers, which is essentially the same for females and males.
'''[[#Top|Back to Top]]'''
==More In-Depth Information==
<br />
Links to additional sites or publication that could further someone’s understanding
'''[[#Top|Back to Top]]'''
==References==
<br />
Any references used, linked if necessary
'''[[#Top|Back to Top]]'''
[[File:ICRPGuide.JPG|50px|link=Guide_to_Radiological_Protection_in_Healthcare_(demo)]]Take me back to the ICRP's [[Guide_to_Radiological_Protection_in_Healthcare_(demo)|Guide to Radiological Protection in Healthcare]]!