Math
[math] x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0} {}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} \frac{z^n}{n!} [/math] [math] \phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR\lt \big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow [/math]
[math] \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0 \end{array} \oint_C x^3\, dx + 4y^2\, dy \sideset{_1^2}{_3^4}\prod_a^b \diamondsuit \heartsuit \clubsuit \spadesuit \flat \natural \sharp \deg h \gcd i \Pr j \det k \hom l \arg m \dim n \iiiint\limits_F \, dx\,dy\,dz\,dt [/math]